

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	NodeRunner 0.1 documentation

NodeRunner

NodeRunner is a python library that lets you use Node.JS libraries
from Python. NodeRunner aims to provide a feature rich pythonic
interface for writing code that uses node.js in python. You can use it
to create things like build-scripts etc.

You probably want to checkout the Getting started section and our API Documentation.

Contents

	Getting started

	API Documentation

	Examples
	Calling the CoffeeScript compiler

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	NodeRunner 0.1 documentation

Getting started

 Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	NodeRunner 0.1 documentation

API Documentation

The API documentation covers classes and functions that you most
likely will find yourself using. Reading this portion of the
documentation should give you a good sense of NodeRunner’s
functionality.

Python module for running node.js code from python

	
class noderunner.Client(secured=False)[source]

	Primary class for interfacing with node

The client class provides an easy to use interface for calling
node functions, handling context and requirements.

	
call(path, args, context)[source]

	Calls the function at path with the passed-in args

Calls the function specified by the path using the passed in
arguments. Functions are always called in the context of the
next to last part of the path. This ensures that the calling
[“console”,”log”] is called in the context of console. The
arguments should be a list or tuple each containing an object
that is covertable to JSON.

	Parameters:	
	path (list [http://docs.python.org/library/functions.html#list]) – The path to the function to be called.

	args – A list arguments to call the function with.
All the arguments have to convertable to JSON.

	context (str [http://docs.python.org/library/functions.html#str]) – The context containing the function

	Returns:	The value returned by the function.

	Return type:	A JavaScript object.

	
context(name, reqs=[])[source]

	Creates a named context

Creates a named context with the passed in requirements
pre-included, the context will have it’s own global object
making it hard to interfere with other things running in node.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Name of the context to be created

	reqs (list [http://docs.python.org/library/functions.html#list]) – The names of the requirements to be loaded into
the context.

	Returns:	a context object for the passed in name.

	Return type:	Context

	
eval(code, context=None)[source]

	Evaluates the code and returns the result

Evaluates the passed in string as JavaScript code. This code
may optionally be run in a context.

	Parameters:	
	code (str [http://docs.python.org/library/functions.html#str]) – The code to be evaluated

	context (str [http://docs.python.org/library/functions.html#str]) – Name of the context to run the code in.

	Returns:	The result of evaluating the expression, as best
represented in python.

	
get(path, context)[source]

	Gets the value of a javascript variable.

Gets the value of a Javascript name/object path in the given
context. The passed in path should be a list containing the
path to the value that you want to read. For example a list
with the elements ‘console’ and ‘log’ corresponds to
“console.log”.

	Parameters:	path (list [http://docs.python.org/library/functions.html#list]) – The path to the value to be retrived.

	Returns:	The value of the object that the path points to.

	Return type:	JSError or a JavaScript object.

	
set(path, val, context)[source]

	Sets the value of a javascript variable.

Sets the value of a Javascript name/object path in the given
context. The passed in path should be a list containing the
path to teh value that you wish to set. For example a list
with the elements ‘console’ and ‘log’ corresponds to
“console.log”. The new value has to be a convertable to JSON
and thus javascript. Therefore nested dicts are fine but other
objects will fail.

	Parameters:	
	path (list [http://docs.python.org/library/functions.html#list]) – The path to the value to be retrived.

	val (int, str, list, tuple, dict, their subclasses
and nested structures comprising of these.) – The value to that the path should be set to

	context (str [http://docs.python.org/library/functions.html#str]) – The context to run the command in.

	Returns:	The changed value as it is represented in JavaScript.

	Return type:	A JavaScript object.

	
stop()[source]

	Stops the client and terminates the node process

	
class noderunner.client.Context(client, name)[source]

	A context in which certain commands such as eval can be run

You almost never need to create a context this way, instead use
the context function on your client object.

	
call(*args)[source]

	Calls the function at path with the passed-in args

Calls the function specified by the path using the passed in
arguments. Functions are always called in the context of the
next to last part of the path. This ensures that the calling
[“console”,”log”] is called in the context of console. The
arguments should be a list or tuple each containing an object
that is covertable to JSON. The last argument to this function
should be a collection containing items, all of which are
convertable to JSON, that represent the arguments to call the
function with.

	Parameters:	*args (list [http://docs.python.org/library/functions.html#list]) – All but the last argument represent the path.
The last argument should contain the arguments.

	Returns:	The value returned by the function.

	Return type:	A JavaScript object.

	
eval(code)[source]

	Evaluates the code in this context.

Evaluates the passed in string and returns the result, the
code will be evaluated in the context named in this instance.

	Parameters:	code (str [http://docs.python.org/library/functions.html#str]) – The code to be evaluated

	Returns:	The result of evaluating the expression, as best
represented in python.

	
get(*path)[source]

	Gets the value of a javascript variable.

Takes any number of arguments each representing one part of
the path. For example calling this function with two
arguments, “console” and “log” returns the value of
console.log in javascript.

	Parameters:	*path – The path to the value to be retrived.

	Returns:	The value of the object that the path points to.

	Return type:	JSError or a JavaScript object.

	
objects

	Returns a handle pointing the context global object.

Retruns a handle that points the the global object or root
object of this context. This is the recommended way to get a
handle for interfacing with context.

	
set(*args)[source]

	Sets the value of a javascript variable.

Takes any number of arguments where all but the last one
represents a part of the object path. The last argument is the
value to set the value to. The function returns the value as
it is represented in JavaScript.

	Parameters:	*path – All but the last argument represent the path.
The last argument is the value to set the path to.

	Returns:	The value that the object at the path was set to.

	Return type:	JSError or A JavaScript object.

	
class noderunner.client.Handle(context, path=[])[source]

	A handle is an object representing the path to some value.

Handles are used for calling JavaScript code in a pythonic way.
This is acheieved using the overridable magic methods provided in
Python.

Accessing an attribute that is not a member of the handle
class returns a handle pointing to that object. For example
accessing root.console.log, where root points to the global object
in a context. Cuasing root to returns handle object pointing to
console, and this object, in turn gives a reference to log.

Calling a handle will call the object that it points to returning
the value returned by the javascript function.

	
get()[source]

	Gets the value that the handle points to

Performs a NodeRunner get operation returning the value that
the handle points to.

	Returns:	The JavaScript value that the handle points at

	Return type:	A JavaScript object

 Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	NodeRunner 0.1 documentation

Examples

NodeRunner comes with a number of examples to show how to best make
use of its apis. If you feel that some part of the application is
missing examples feel free to submit pull requests including new ones.

Calling the CoffeeScript compiler

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	"""Example showing how to use coffeescript with noderunner
"""
from noderunner import Client

code = """test_fn = -> console.log('foo')"""

def main():
 cli = Client()

 ctx = cli.context("example", [("cs", "coffee-script")])

 res = ctx.call("cs", "compile", (code,))

 print(res)

if __name__ == "__main__":
 main()

 Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	NodeRunner 0.1 documentation

 Python Module Index

 n

 			

 		
 n	

 	
 	
 noderunner	

 Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	NodeRunner 0.1 documentation

Index

 C
 | E
 | G
 | H
 | N
 | O
 | S

C

 	

 	call() (noderunner.Client method)

 	

 	(noderunner.client.Context method)

 	Client (class in noderunner)

 	

 	Context (class in noderunner.client)

 	context() (noderunner.Client method)

E

 	

 	eval() (noderunner.Client method)

 	

 	(noderunner.client.Context method)

G

 	

 	get() (noderunner.Client method)

 	

 	(noderunner.client.Context method)

 	(noderunner.client.Handle method)

H

 	

 	Handle (class in noderunner.client)

N

 	

 	noderunner (module)

O

 	

 	objects (noderunner.client.Context attribute)

S

 	

 	set() (noderunner.Client method)

 	

 	(noderunner.client.Context method)

 	

 	stop() (noderunner.Client method)

 Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		NodeRunner 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/up.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		NodeRunner 0.1 documentation »

 All modules for which code is available

		noderunner.client

 © Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

_modules/noderunner/client.html

 Navigation

 		
 index

 		
 modules |

 		NodeRunner 0.1 documentation »

 		Module code »

 Source code for noderunner.client

"""Client classes for noderunner"""
from noderunner.connection import Connection
from noderunner.protocol import Protocol
from noderunner.process import open_process
from noderunner.socket import get_sockets

[docs]class Client(object):
 """Primary class for interfacing with node

 The client class provides an easy to use interface for calling
 node functions, handling context and requirements.
 """

 def __init__(self, secured=False):
 """Spawns a new node process and sets up communication"""
 self._secured = secured
 self._start()

 def _start(self):
 serv, cli, clifd = get_sockets()
 secret = "__NO_AUTH__"
 if self._secured: # pragma: nocover
 raise RuntimeError("Secure connections are not supported yet")

 self._proc = open_process(clifd, secret)
 self._con = Connection(serv)
 self._proto = Protocol(self._con,
 None if not self._secured else secret)
 self._proto.start()

[docs] def eval(self, code, context=None):
 """Evaluates the code and returns the result

 Evaluates the passed in string as JavaScript code. This code
 may optionally be run in a context.

 :param code: The code to be evaluated
 :type code: str
 :param context: Name of the context to run the code in.
 :type context: str
 :return: The result of evaluating the expression, as best
 represented in python.
 """

 return self._proto.request_sync("eval", code=code, context=context)

[docs] def stop(self):
 """Stops the client and terminates the node process"""
 self._proto.stop()
 self._proc.terminate()

[docs] def context(self, name, reqs=[]):
 """Creates a named context

 Creates a named context with the passed in requirements
 pre-included, the context will have it's own global object
 making it hard to interfere with other things running in node.

 :param name: Name of the context to be created
 :type name: str
 :param reqs: The names of the requirements to be loaded into
 the context.
 :type reqs: list
 :return: a context object for the passed in name.
 :rtype: :class:`Context`
 """
 name = self._proto.request_sync("mkcontext",
 name=name,
 requirements=reqs)
 return Context(self, name)

[docs] def get(self, path, context):
 """Gets the value of a javascript variable.

 Gets the value of a Javascript name/object path in the given
 context. The passed in path should be a list containing the
 path to the value that you want to read. For example a list
 with the elements 'console' and 'log' corresponds to
 "console.log".

 :param path: The path to the value to be retrived.
 :type path: list
 :return: The value of the object that the path points to.
 :rtype: :class:`JSError` or a JavaScript object.
 """
 return self._proto.request_sync("get", path=path, context=context)

[docs] def set(self, path, val, context):
 """Sets the value of a javascript variable.

 Sets the value of a Javascript name/object path in the given
 context. The passed in path should be a list containing the
 path to teh value that you wish to set. For example a list
 with the elements 'console' and 'log' corresponds to
 "console.log". The new value has to be a convertable to JSON
 and thus javascript. Therefore nested dicts are fine but other
 objects will fail.

 :param path: The path to the value to be retrived.
 :type path: list
 :param val: The value to that the path should be set to
 :type val: int, str, list, tuple, dict, their subclasses
 and nested structures comprising of these.

 :param context: The context to run the command in.
 :type context: str

 :return: The changed value as it is represented in JavaScript.
 :rtype: A JavaScript object.
 """
 return self._proto.request_sync("set", path=path,
 value=val,
 context=context)

[docs] def call(self, path, args, context):
 """Calls the function at path with the passed-in args

 Calls the function specified by the path using the passed in
 arguments. Functions are always called in the context of the
 next to last part of the path. This ensures that the calling
 ["console","log"] is called in the context of console. The
 arguments should be a list or tuple each containing an object
 that is covertable to JSON.

 :param path: The path to the function to be called.
 :type path: list
 :param args: A list arguments to call the function with.
 All the arguments have to convertable to JSON.
 :param context: The context containing the function
 :type context: str

 :return: The value returned by the function.
 :rtype: A JavaScript object.
 """
 return self._proto.request_sync("call", path=path,
 args=args,
 context=context)

[docs]class Context(object):
 """A context in which certain commands such as eval can be run

 You almost never need to create a context this way, instead use
 the context function on your client object.
 """

 def __init__(self, client, name):
 self._client = client
 self._name = name

[docs] def eval(self, code):
 """Evaluates the code in this context.

 Evaluates the passed in string and returns the result, the
 code will be evaluated in the context named in this instance.

 :param code: The code to be evaluated
 :type code: str
 :return: The result of evaluating the expression, as best
 represented in python.
 """
 return self._client.eval(code, context=self._name)

[docs] def get(self, *path):
 """Gets the value of a javascript variable.

 Takes any number of arguments each representing one part of
 the path. For example calling this function with two
 arguments, "console" and "log" returns the value of
 console.log in javascript.

 :param *path: The path to the value to be retrived.
 :type path: list
 :return: The value of the object that the path points to.
 :rtype: :class:`JSError` or a JavaScript object.
 """
 return self._client.get(path, self._name)

[docs] def set(self, *args):
 """Sets the value of a javascript variable.

 Takes any number of arguments where all but the last one
 represents a part of the object path. The last argument is the
 value to set the value to. The function returns the value as
 it is represented in JavaScript.

 :param *path: All but the last argument represent the path.
 The last argument is the value to set the path to.

 :return: The value that the object at the path was set to.
 :rtype: :class:`JSError` or A JavaScript object.
 """
 args = list(args)
 val = args.pop()
 return self._client.set(args, val, self._name)

[docs] def call(self, *args):
 """Calls the function at path with the passed-in args

 Calls the function specified by the path using the passed in
 arguments. Functions are always called in the context of the
 next to last part of the path. This ensures that the calling
 ["console","log"] is called in the context of console. The
 arguments should be a list or tuple each containing an object
 that is covertable to JSON. The last argument to this function
 should be a collection containing items, all of which are
 convertable to JSON, that represent the arguments to call the
 function with.

 :param *args: All but the last argument represent the path.
 The last argument should contain the arguments.
 :type *args: list

 :return: The value returned by the function.
 :rtype: A JavaScript object.
 """
 args = list(args)
 fn_args = args.pop()
 return self._client.call(args, fn_args, self._name)

 @property
 def objects(self):
 """Returns a handle pointing the context global object.

 Retruns a handle that points the the global object or root
 object of this context. This is the recommended way to get a
 handle for interfacing with context.
 """
 return Handle(self)

[docs]class Handle(object):
 """A handle is an object representing the path to some value.

 Handles are used for calling JavaScript code in a pythonic way.
 This is acheieved using the overridable magic methods provided in
 Python.

 Accessing an attribute that is not a member of the handle
 class returns a handle pointing to that object. For example
 accessing root.console.log, where root points to the global object
 in a context. Cuasing root to returns handle object pointing to
 console, and this object, in turn gives a reference to log.

 Calling a handle will call the object that it points to returning
 the value returned by the javascript function.
 """

 __slots__ = ("_path", "_context")

 def __init__(self, context, path=[]):
 self._context = context
 self._path = path

 def __getattr__(self, name):
 return Handle(self._context, self._path + [name])

 def __setattr__(self, name, value):
 if name in self.__slots__:
 super(Handle, self).__setattr__(name, value)
 else:
 self.__set(name, value)

 def __set(self, name, value):
 set_args = list(self._path) + [name, value]
 return self._context.set(*set_args)

[docs] def get(self):
 """Gets the value that the handle points to

 Performs a NodeRunner get operation returning the value that
 the handle points to.

 :returns: The JavaScript value that the handle points at
 :rtype: A JavaScript object
 """
 return self._context.get(*self._path)

 def __str__(self):
 return "Handle: " + ".".join(self._path)

 def __call__(self, *args):
 call_args = list(self._path) + [args]
 return self._context.call(*call_args)

 __getitem__ = __getattr__
 __setitem__ = __set

 © Copyright 2012, Willliam Högman.
 Created using Sphinx 1.3.5.

